Study of Electronic and Dielectric Properties of Magnesium Phosphide
DOI:
https://doi.org/10.51983/ajsat-2018.7.2.1028Keywords:
Magnesium phosphide, Dielectric constant, Electronic Density of States, First-principles calculations, Polarizability, Phonon modesAbstract
First-principles calculations based on Density Functional Theory have been done on Magnesium phosphide. Its cubic unit cell has been simulated. Band gap in case of this material comes out to be 0.5eV. This value is in the range exhibited by semiconducting materials. Dielectric constant and Polarizability of the material have been computed. The value of dielectric constant comes out to be 51.9 along all the three axes. The polarizability values are found to be 46.7 (Å)3 along all the three axes. Phonon modes at gamma point in the material range from 0 cm-1 to 452 cm-1.
References
G. Bettermann, "Ullmann’s Encyclopedia of Industrial Chemistry," 7th ed. NY, NY: John Wiley & Sons, 2008.
D. R. Lide, "CRC Handbook of Chemistry and Physics," 88th ed. CRC Press, Taylor & Francis, Boca Raton, pp.4-74, 2007.
R. J. Lewis, Sr. (ed.), "Sax’s Dangerous Properties of Industrial Materials," 11th ed. Wiley-Interscience, Wiley & Sons, Inc., Hoboken, NJ, pp. 2268, 2004.
Y. Shi and B. Zhang, “Recent Advances of Transition Metal Phosphide Nanomaterials: Synthesis and Applications in Hydrogen Evolution Reaction,” Chem. Soc. Rev., vol. 45, pp. 1529–1541, 2016.
H. R. Sreepad, K. P. S. Hembram, and U. V. Waghmare, “First-principles Study of Electronic and Dielectric Properties of Polyoxymethylene,” AIP Conf. Proc., vol. 1349, pp. 871-872, 2011.
H. R. Sreepad, “First-principles Study of Electronic and Dielectric Properties of 2-azacycloheptanoneazine,” Chem. Technol.: An Indian J., vol. 11, no. 4, pp. 133-137, 2016.
M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulas, “Iterative Minimization Techniques for Ab Initio Total-energy Calculations: Molecular Dynamics and Conjugate Gradients,” Rev. Mod. Phys., vol. 64, no. 4, pp. 1045-1097, 1992.
H. R. Sreepad, H. R. Ravi, K. Ahmed, and U. V. Waghmare, “Radiation Induced Changes in Electronic and Dielectric Properties of Polyoxymethylene,” AIP Conf. Proc., vol. 1447, no. 1, pp. 793-794, 2013.
H. R. Sreepad, “First-principles Study of Electronic and Dielectric Properties of 3-methyl-1,5-diphenyl-4,5-dihydro-1H-pyrazole,” Org. Chem.: An Indian J., vol. 12, no. 1, pp. 1-5, 2016.
European Chemicals Agency – ECHA, "Trimagnesium Diphosphide," [Online]. Available: https://echa.europa.eu/information-on-chemicals/cl-inventory-database/-/discli/details/67290.
EU Pesticides Database, "Magnesium Phosphide," [Online]. Available: http://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/public/?event=activesubstance.detail&language=EN&selectedID=1524.
PubChem, [Online]. Available: https://pubchem.ncbi.nlm.nih.gov.
Wikipedia, "Molecular Modelling," [Online]. Available: http://en.wikipedia.org/wiki/Molecular_modelling.
S. Baroni, S. A. Dal Corso, P. De Gironcoli, and S. Baroni, [Online]. Available: http://www.pwscf.org.
J. P. Perdew and A. Zunger, “Self-interaction Correction to Density-functional Approximations for Many-electron Systems,” Phys. Rev. B, vol. 23, pp. 5048-5079, 1981.
D. Vanderbilt, “Soft Self-consistent Pseudopotentials in Generalized Eigenvalue Formalism,” Phys. Rev. B, vol. 41, pp. 7892–7895, 1990.
H. J. Monkhorst and J. D. Pack, “Special Points for Brillouin-zone Integrations,” Phys. Rev. B, vol. 13, no. 12, pp. 5188-5192, 1976.
M. A. Methfessel and M. Methfessel, “High-precision Sampling for Brillouin-zone Integration in Metals,” Phys. Rev. B, vol. 40, pp. 3616–3621, 1989.
Avogadro, [Online]. Available: http://avogadro.openmolecules.net/wiki/.
L. Passerini, “Crystal Structure of Magnesium Phosphide,” Gazz. Chim. Ital., vol. 58, pp. 655–664, 1928.
A. Kokalj, “Computer Graphics and Graphical User Interfaces as Tools in Simulations of Matter at the Atomic Scale,” Comput. Mater. Sci., vol. 28, pp. 155-168, 2003. [Online]. Available: http://www.xcrysden.org/.
H. R. Sreepad, “Structure Simulation and Study of Electronic and Dielectric Properties of Two Derivatives of Benzamide,” Mol. Cryst. Liq. Cryst., vol. 625, no. 1, pp. 195-201, 2016.
H. R. Sreepad, “First-principles Study of Fluorination of Azobenzene,” Mol. Cryst. Liq. Cryst., vol. 634, pp. 91-96, 2016.
Ioffe Database, [Online]. Available: http://www.ioffe.ru/SVA/NSM/Semicond/.
O. Safa Kasap and P. Capper, Springer Handbook of Electronic and Photonic Materials. Springer, pp. 54, 327, 2006. ISBN 0-387-26059-5.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 The Research Publication
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.