Meta-Analysis of Predictive Modelling Approaches and Systematic Reviews for Maternal Healthcare Outcomes
DOI:
https://doi.org/10.70112/ajsat-2024.13.1.4110Keywords:
Maternal Health, Predictive Modeling, Healthcare Outcomes, Systematic Review, PregnancyAbstract
Enhancing parental care is of utmost importance in ensuring the well-being of pregnant women throughout their
pregnancy and childbirth journey. Although there have been significant advancements in this area, persistent challenges such as infections, hemorrhage, hypertension, unsafe abortions, and other concerns remain. Prioritizing maternal health could greatly reduce mortality rates and promote safer pregnancies. This meta-analysis assesses research methodologies in maternal healthcare outcomes, evaluating their strengths and weaknesses. We also explore the prevalence of systematic reviews in maternal health to enhance healthcare outcomes. We examined five major databases—Google Scholar, PubMed, Elsevier, PLOS, and BMC—encompassing descriptive and computational research on maternal outcomes between 2000 and 2021. Our search terms included predicting, modeling, maternal, outcome, healthcare forecasting, demonstrating, consequence, diagnosis, machine learning, mathematical, and statistical. Forty-four papers related to maternal outcomes were reviewed. Google Scholar yielded 50 articles (46.30%), PubMed 33 articles (31.48%), Elsevier 12 articles (11.11%), BMC nine articles (9.26%), and PLOS two articles (1.85%). Our findings highlight a high awareness of maternal outcome prevalence. Multiple factors contribute to maternal risk, including maternal education, economic circumstances, financial constraints, and access to antenatal
care. Therefore, this work advocates for the adoption of additional methods and mathematical models to predict
maternal outcomes, ultimately improving maternal healthcare.
References
B. W. Ope, “Reducing maternal mortality in Nigeria: addressing maternal health services’ perception and experience,” Journal of Global Health Reports, vol. 4, p. e2020028, May 2020, doi: 10.29392/001c.12733.
WHO, “Trends in Maternal Mortality: 1990 to 2015 - Estimates by WHO, UNICEF, UNFPA, World Bank Group and the United Nations Population Division - World,” ReliefWeb. Accessed: Aug. 09, 2021. [Online]. Available: https://reliefweb.int/report/world/trends-maternal-mortality-1990-2015-estimates-who-unicef-unfpa-world-bank-group-and
K. Harron, R. Gilbert, J. Fagg, A. Guttmann, and J. van der Meulen, “Associations between pre-pregnancy psychosocial risk factors and infant outcomes: a population-based cohort study in England,” The Lancet Public Health, vol. 6, no. 2, pp. e97–e105, Feb. 2021, doi: 10.1016/S2468-2667(20)30210-3.
C. McNiss, M. Kalarchian, and J. Laurent, “Factors associated with childhood sexual abuse and adolescent pregnancy,” Child Abuse & Neglect, vol. 120, p. 105183, Oct. 2021, doi: 10.1016/j.chiabu.2021.105183.
Y. Miyake, K. Tanaka, H. Okubo, S. Sasaki, A. Tokinobu, and M. Arakawa, “Maternal consumption of soy and isoflavones during pregnancy and risk of childhood behavioural problems: the Kyushu Okinawa Maternal and Child Health Study,” International Journal of Food Sciences and Nutrition, vol. 0, no. 0, pp. 1–10, Apr. 2021, doi: 10.1080/09637486.2021.1904844.
M. M. Salawu, R. F. Afolabi, B. M. Gbadebo, A. T. Salawu, A. F. Fagbamigbe, and A. S. Adebowale, “Preventable multiple high-risk birth behaviour and infant survival in Nigeria,” BMC Pregnancy Childbirth, vol. 21, no. 1, p. 345, Dec. 2021, doi: 10.1186/s12884-021-03792-8.
P. S. Dhagavkar, A. Dalal, A. Nilgar, and M. Angolkar, “Safe motherhood practices - Knowledge and behaviour among pregnant women in Belagavi, Karnataka. A descriptive study,” Clinical Epidemiology and Global Health, vol. 12, p. 100846, Oct. 2021, doi: 10.1016/j.cegh.2021.100846.
A. Saeed, M. Iftikhar, T. Hussain, A. Ali, and A. Noureen, “The effects of socio-economic factors on the prevalence of anemia with reference to different trimester of pregnancy and level of ferritin in pregnant women of District Lahore, Pakistan,” Sri Lanka, p. 6, 2021.
W. Tola, E. Negash, T. Sileshi, and N. Wakgari, “Late initiation of antenatal care and associated factors among pregnant women attending antenatal clinic of Ilu Ababor Zone, southwest Ethiopia: A cross-sectional study.” Accessed:Aug.13,2021.[Online].Available:https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0246230
A. G. Alene, O. O. Olayemi, and Y. Berhane, “Timing and factors associated with early antenatal visits among pregnant women in west Gojjam, northwest Ethiopia,” African Journal of Midwifery and Women’s Health, vol. 15, no. 2, pp. 1–11, Apr. 2021, doi: 10.12968/ajmw.2020.0023.
H. Billings and N. A. Shebl, “Factors contributing towards women booking late for antenatal care in the UK,” vol. 1, no. 10, pp. 1–30, 2021.
L. G. Gebrekirstos, T. B. Wube, M. H. Gebremedhin, and E. A. Lake, “Magnitude and determinants of adequate antenatal care service utilization among mothers in Southern Ethiopia,” PLOS ONE, vol. 16, no. 7, p. e0251477, Jul. 2021, doi: 10.1371/journal.pone.0251477.
Y. O. Kareem, I. O. Morhason-Bello, F. M. OlaOlorun, and S. Abdullahi, “Temporal relationship between Women’s empowerment and utilization of antenatal care services: lessons from four National Surveys in sub-Saharan Africa,” SpringerLink. Accessed: Aug. 13, 2021. [Online]. Available: https://link.springer.com/article/10.1186/s12884-021-03679-8
H. Rayment-Jones et al., “Project20: Does continuity of care and community-based antenatal care improve maternal and neonatal birth outcomes for women with social risk factors? A prospective, observational study,” PLOS ONE, vol. 16, no. 5, p. e0250947, May2021,doi: 10.1371/journal.pone.0250947.
A. Seid and M. Ahmed, “Survival time to first antenatal care visit and its predictors among women in Ethiopia,” PLOS ONE, vol. 16, no. 5, p. e0251322, May 2021, doi: 10.1371/journal.pone.0251322.
D. L. Hoyert, “Maternal mortality and related concepts,” Vital Health Stat 3, no. 33, pp. 1–13, Feb. 2007.
N. M. Nour, “An Introduction to Maternal Mortality,” Rev Obstet Gynecol, vol. 1, no. 2, pp. 77–81, 2008.
B. O. Asamoah, K. M. Moussa, M. Stafström, and G. Musinguzi, “Distribution of causes of maternal mortality among different socio-demographic groups in Ghana; a descriptive study,” BMC Public Health, vol. 11, no. 1, Art. no. 1, Dec. 2011, doi: 10.1186/1471-2458-11-159.
Darnah, M. I. Utoyo, and N. Chamidah, “Modeling of Maternal Mortality and Infant Mortality Cases in East Kalimantan using Poisson Regression Approach Based on Local Linear Estimator,” IOP Conf. Ser.: Earth Environ. Sci., vol. 243, p. 012023, Apr. 2019, doi: 10.1088/1755-1315/243/1/012023.
S. Roder-DeWan, K. Nimako, N. A. Y. Twum-Danso, A. Amatya, A. Langer, and M. Kruk, “Health system redesign for maternal and newborn survival: rethinking care models to close the global equity gap,” BMJ Global Health, vol. 5, no. 10, p. e002539, Oct. 2020, doi: 10.1136/bmjgh-2020-002539.
K. T. Storeng and D. P. Béhague, “‘Guilty until proven innocent’: the contested use of maternal mortality indicators in global health,” Critical Public Health, vol. 27, no. 2, pp. 163–176, Mar. 2017, doi: 10.1080/09581596.2016.1259459.
S. Nishtala et al., “Missed calls, Automated Calls and Health Support: Using AI to improve maternal health outcomes by increasing program engagement,” arXiv:2006.07590 [cs], Jul. 2020. Accessed: Aug. 13, 2021. [Online]. Available: http://arxiv.org/abs/2006.07590
U. Inyang, F. B., I. J., A. A., and C. O., “Comparative Analytics of Classifiers on Resampled Datasets for Pregnancy Outcome Prediction,” International Journal of Advanced Computer Science and Applications, vol. 11, Jan. 2020, doi: 10.14569/IJACSA.2020.0110662.
U. G. Inyang, I. J. Eyoh, C. O. Nwokoro, and F. B. Osang, “Predictive Decision Support Analytic Model for Intelligent Obstetric Risks Management,” in International Conference on Emerging Applications and Technologies for Industry 4.0 (EATI’2020), J. H. Abawajy, K.-K. R. Choo, and H. Chiroma, Eds., in Lecture Notes in Networks and Systems. Cham: Springer International Publishing, 2021, pp. 92–108. doi: 10.1007/978-3-030-80216-5_8.
U. G. Inyang, E. E. Akpan, and O. C. Akinyokun, “A Hybrid Machine Learning Approach for Flood Risk Assessment and Classification,” Int. J. Comp. Intel. Appl., vol. 19, no. 02, p. 2050012, Jun. 2020, doi: 10.1142/S1469026820500121.
T. O. Ogunbodede, B. A. Akinnuwesi, and B. S. Aribisala, “Computational Models for Diagnosing Tuberculosis: A Systematic Review,” Journal of Research and Review in Science, vol. 4, no. 4, pp. 7–14, 2017.
A. Pashazadeh and N. J. Navimipour, “Big data handling mechanisms in the healthcare applications: A comprehensive and systematic literature review,” Journal of Biomedical Informatics, vol. 82, pp. 47–62, Jun. 2018, doi: 10.1016/j.jbi.2018.03.014.
M. Perkusich et al., “Intelligent software engineering in the context of agile software development: A systematic literature review,” Information and Software Technology, vol. 119, p. 106241, Mar. 2020, doi: 10.1016/j.infsof.2019.106241.
A. Selcuk, “A Guide for Systematic Reviews: PRISMA,” Turkish Archives of Otorhinolaryngology, vol. 57, pp. 57–58, May 2019, doi: 10.5152/tao.2019.4058.
M. K. Swartz, “The PRISMA Statement: A Guideline for Systematic Reviews and Meta-Analyses,” Journal of Pediatric Health Care, vol. 25, no. 1, pp. 1–2, Jan. 2011, doi: 10.1016/j.pedhc.2010.09.006.
T. A. Jido, “Ecalmpsia: maternal and fetal outcome,” Afr. Health Sci., vol. 12, no. 2, Art. no. 2, 2012, doi: 10.4314/ahs.v12i2.11.
S.-R. Liou, P. Wang, and C.-Y. Cheng, “Effects of prenatal maternal mental distress on birth outcomes,” Women Birth, vol. 29, no. 4, pp. 376–380, Aug. 2016, doi: 10.1016/j.wombi.2016.03.004.
A. Al-Matary et al., “Clinical outcomes of maternal and neonate with COVID-19 infection – Multicenter study in Saudi Arabia,” J. Infect. Public Health, vol. 14, no. 6, pp. 702–708, Jun. 2021, doi: 10.1016/j.jiph.2021.03.013.
H. N. Choi, B. R. J. Ng, Y. Arafat, B. A. S. Mendis, A. Dharmawardhane, and T. Lucky, “Evaluation of safety and foeto-maternal outcome following non-obstetric surgery in pregnancy: a retrospective single-site Australian study,” ANZ J. Surg., vol. 91, no. 4, pp. 627–632, 2021, doi: 10.1111/ans.16617.
M. Dawodi, T. Wada, and J. A. Baktash, “Applicability of ICT, Data Mining and Machine Learning to Reduce Maternal Mortality and Morbidity: Case Study Afghanistan - ProQuest,” Accessed: Aug. 27, 2021. [Online]. Available: https://www.proquest.com/openview/7015d5f8b8a0455cb92c1b311b6a7467/1?pq-origsite=gscholar&cbl=936334.
T. A. Kalhan et al., “Caries Risk Prediction models in medical healthcare setting,” J. Dent. Res., vol. 99, no. 7, pp. 787–796, Jul. 2020, doi: 10.1177/0022034520913476.
S. K. Ousman, J. H. Magnus, J. Sundby, and M. K. Gebremariam, “Uptake of Skilled Maternal Healthcare in Ethiopia: A Positive Deviance Approach,” Int. J. Environ. Res. Public Health, vol. 17, no. 5, p. 1712, 2020.
A. K. Yadav and P. K. Jena, “Maternal health outcomes of socially marginalized groups in India,” Int. J. Health Care Qual. Assur., 2020, doi: 10.1108/IJHCQA-08-2018-0212.
A. A. Akinkugbe, “Does the Trimester of Smoking Matter in the Association between Prenatal Smoking and the Risk of Early Childhood Caries?” Caries Res., vol. 55, no. 2, pp. 114–121, 2021, doi: 10.1159/000513257.
H. Bakhsh et al., “Amniotic fluid disorders and the effects on prenatal outcome: a retrospective cohort study,” BMC Pregnancy Childbirth, vol. 21, no. 1, p. 75, Jan. 2021, doi: 10.1186/s12884-021-03549-3.
S. H. Gwon, S. Jeong, and L. Bullock, “Cotinine Fluctuation in Maternal Saliva During and After Pregnancy: Implications for Perinatal Outcomes,” MCN Am. J. Matern. Child Nurs., vol. 46, no. 5, pp. 293–298, Oct. 2021, doi: 10.1097/NMC.0000000000000743.
A. Ashcroft, S. J. Chapman, and L. Mackillop, “The outcome of pregnancy in women with cystic fibrosis: a UK population-based descriptive study,” BJOG, vol. 127, no. 13, pp. 1696–1703, 2020, doi: 10.1111/1471-0528.16423.
M. J. Delahoy et al., “Characteristics and Maternal and Birth Outcomes of Hospitalized Pregnant Women with Laboratory-Confirmed COVID-19 — COVID-NET, 13 States, March 1–August 22, 2020,” MMWR Morb. Mortal. Wkly. Rep., vol. 69, no. 38, pp. 1347–1354, Sep. 2020, doi: 10.15585/mmwr.mm6938e1.
C. M. Nwogu, K. S. Okunade, M. A. Adenekan, A. I. Sekumade, S. John-olabode, and A. A. Oluwole, “Association between Maternal Serum Homocysteine Concentrations in Early Pregnancy and Adverse Pregnancy Outcomes,” Ann. Afr. Med., vol. 19, no. 2, pp. 113–118, 2020, doi: 10.4103/aam.aam_41_19.
F. Okonofua et al., “Assessing the knowledge and skills on emergency obstetric care among health providers: Implications for health systems strengthening in Nigeria,” PLoS ONE, vol. 14, no. 4, p. e0213719, Apr. 2019, doi: 10.1371/journal.pone.0213719.
C. Deepak, J. Jauhari N, and D. Dhungana H, “A Study on Utilization of Maternal Health Services and Factors Influencing the Utilization in Urban Slums of Lucknow,” Int. J. Med. Public Health, vol. 8, no. 2, pp. 77–81, Aug. 2018, doi: 10.5530/ijmedph.2018.2.17.
H. K. Namatovu, “Enhancing antenatal care decisions among expectant mothers in Uganda,” University of Groningen, SOM research school, 2018.
M. Lin, C. Huang, R. Chen, H. Fujita, and X. Wang, “Directional correlation coefficient measures for Pythagorean fuzzy sets: their applications to medical diagnosis and cluster analysis,” Complex Intell. Syst., vol. 7, no. 2, pp. 1025–1043, Apr. 2021, doi: 10.1007/s40747-020-00261-1.
S. Akhtar, M. Hussain, I. Majeed, and M. Afzal, “Knowledge attitude and practice regarding antenatal care among pregnant women in rural area of Lahore,” Int. J. Social Sci. Manage., vol. 5, no. 3, pp. 155–162, 2018.
V. J. Ragolane, “Factors contributing to late antenatal care booking in Mopani District of Limpopo Province (Doctoral dissertation),” University of South Africa, South Africa, 2017.
A. F. Fagbamigbe and E. S. Idemudia, “Barriers to antenatal care use in Nigeria: evidences from non-users and implications for maternal health programming,” BMC Pregnancy Childbirth, vol. 15, no. 1, p. 1, Accessed: Aug. 17, 2021. [Online]. Available: https://link.springer.com/article/10.1186/s12884-015-0527-y.
S. A. Wiebe, C. A. C. Clark, D. M. De Jong, N. Chevalier, K. A. Espy, and L. Wakschlag, “Prenatal tobacco exposure and self-regulation in early childhood: Implications for developmental psychopathology,” Dev. Psychopathol., vol. 27, no. 2, pp. 397–409, May 2015, doi: 10.1017/S095457941500005X.
B. Maughan, A. Taylor, A. Caspi, and T. E. Moffitt, “Prenatal Smoking and Early Childhood Conduct Problems: Testing Genetic and Environmental Explanations of the Association,” JAMA Psychiatry, Accessed: Aug. 17, 2021. [Online]. Available: https://jamanetwork.com/journals/jamapsychiatry/fullarticle/482043.
I. A. Adeoye, A. A. Onayade, and A. O. Fatusi, “Incidence, determinants and perinatal outcomes of near miss maternal morbidity in Ile-Ife Nigeria: a prospective case control study,” BMC Pregnancy Childbirth, vol. 13, no. 1, p. 1, Accessed: Aug. 17, 2021. [Online]. Available: https://link.springer.com/article/10.1186/1471-2393-13-93.
E. N. Ekure, V. C. Ezeaka, E. Iroha, and M. T. C. Egri-Okwaji, “Prospective audit of perinatal mortality among inborn babies in a tertiary health center in Lagos,” Niger. J. Clin. Pract., vol. 14, no. 1, pp. 1–7, 2011.
L. O. Omo-Aghoja, O. A. Aisien, J. T. Akuse, S. Bergstrom, and F. E. Okonofua, “Maternal mortality and emergency obstetric care in Benin City, South-south Nigeria,” Nig. J. Med., 2010.
D. Goffman, R. C. Madden, E. A. Harrison, I. R. Merkatz, and C. Chazotte, “Predictors of maternal mortality and near-miss maternal morbidity,” J. Perinatol., vol. 27, no. 10, pp. 597–601, Oct. 2007, doi: 10.1038/sj.jp.7211810.
M. Lydon-Rochelle, V. L. Holt, D. P. Martin, and T. R. Easterling, “Association between method of delivery and maternal rehospitalization,” JAMA, vol. 283, no. 18, pp. 2411–2416, 2000.
S. Nishtala et al., “Selective Intervention Planning using Restless Multi-Armed Bandits to Improve Maternal and Child Health Outcomes,” arXiv, Apr. 2021, Accessed: Sep. 10, 2021. [Online]. Available: http://arxiv.org/abs/2103.09052.
S. Shastri and V. Mansotra, “Data Mining Probabilistic Classifiers for Extracting Knowledge from Maternal Health Datasets,” Int. J. Innov. Technol. Explor. Eng., vol. 9, pp. 2769–2776, Dec. 2019, doi: 10.35940/ijitee.B6633.129219.
M. A. Ide, M. Daniel, and A. V. I. E., “An Optimized Data Management Model for Maternal Mortality in Bayelsa State,” Computer Engineering and Intelligent Systems, vol. 10, no. 5, p. 8, 2019.
P. Kour et al., “Classification of Maternal Healthcare Data using Naive Bayes,” International Journal of Computer Sciences and Engineering, vol. 7, Apr. 2019, doi: 10.26438/ijcse/v7i3.388394.
N. Egejuru, A. Asinobi, T. Aderounmu, S. Adegoke, P. Idowu, and O. Adewunmi, “Adebayo Idowu. A Classification Model for Severity of Neonatal Jaundice Using Deep Learning,” American Journal of Pediatrics, vol. 5, pp. 159–169, Jan. 2019, doi: 10.11648/j.ajp.20190503.24.
J. H. Jhee et al., “Prediction model development of late-onset preeclampsia using machine learning-based methods,” PLOS ONE, vol. 14, no. 8, p. e0221202, Aug. 2019, doi: 10.1371/journal.pone.0221202.
K. Zaineb, K. Aloui, and N. Saber, “New Approach based on Machine Learning for Short-Term Mortality Prediction in Neonatal Intensive Care Unit,” International Journal of Advanced Computer Science and Applications, vol. 10, Jan. 2019, doi: 10.14569/IJACSA.2019.0100778.
A. J. Masino et al., “Machine learning models for early sepsis recognition in the neonatal intensive care unit using readily available electronic health record data,” PLOS ONE, vol. 14, no. 2, p. e0212665, Feb. 2019, doi: 10.1371/journal.pone.0212665.
D. S. W. Ting et al., “Artificial intelligence and deep learning in ophthalmology,” British Journal of Ophthalmology, vol. 103, no. 2, pp. 167–175, Feb. 2019, doi: 10.1136/bjophthalmol-2018-313173.
P. Idowu, Development of a Predictive Model for Maternal Mortality in Nigeria Using Data Mining Technique. 2017.
S. Pereira, L. Torres, F. Portela, M. F. Santos, J. Machado, and A. Abelha, “Predicting Triage Waiting Time in Maternity Emergency Care by Means of Data Mining,” in New Advances in Information Systems and Technologies, vol. 445, Á. Rocha, A. M. Correia, H. Adeli, L. P. Reis, and M. Mendonça Teixeira, Eds., in Advances in Intelligent Systems and Computing, vol. 445, Cham: Springer International Publishing, 2016, pp. 579–588, doi: 10.1007/978-3-319-31307-8_60.
G. Sahle, “Ethiopic maternal care data mining: discovering the factors that affect postnatal care visit in Ethiopia,” Health Inf Sci Syst, vol. 4, no. 1, p. 4, May 2016, doi: 10.1186/s13755-016-0017-2.
A. Maitra and N. Kuntagod, “A novel mobile application to assist maternal health workers in rural India,” in 2013 5th International Workshop on Software Engineering in Health Care (SEHC), San Francisco, CA, USA: IEEE, May 2013, pp. 75–78, doi: 10.1109/SEHC.2013.6602482.
D. R. Chowdhury, M. Chatterjee, and R. K. Samanta, “An Artificial Neural Network Model for Neonatal Disease Diagnosis,” p. 11, 2011.
L. Davidson and M. R. Boland, “Towards deep phenotyping pregnancy: a systematic review on artificial intelligence and machine learning methods to improve pregnancy outcomes,” Briefings in Bioinformatics, vol. 22, no. 5, Sep. 2021, doi: 10.1093/bib/bbaa369.
H. Sufriyana et al., “Comparison of Multivariable Logistic Regression and Other Machine Learning Algorithms for Prognostic Prediction Studies in Pregnancy Care: Systematic Review and Meta-Analysis,” JMIR Medical Informatics, vol. 8, no. 11, p. e16503, Nov. 2020, doi: 10.2196/16503.
P. J. Saturno-Hernández, I. Martínez-Nicolás, E. Moreno-Zegbe, M. Fernández-Elorriaga, and O. Poblano-Verástegui, “Indicators for monitoring maternal and neonatal quality care: a systematic review,” BMC Pregnancy Childbirth, vol. 19, no. 1, p. 25, Jan. 2019, doi: 10.1186/s12884-019-2173-2.
Z. S. Lassi et al., “Systematic review on human resources for health interventions to improve maternal health outcomes: evidence from low- and middle-income countries,” Hum Resour Health, vol. 14, no. 1, p. 10, Dec. 2016, doi: 10.1186/s12960-016-0106-y.
Z. Aitken, C. C. Garrett, B. Hewitt, L. Keogh, J. S. Hocking, and A. M. Kavanagh, “The maternal health outcomes of paid maternity leave: A systematic review,” Social Science & Medicine, vol. 130, pp. 32–41, Apr. 2015, doi: 10.1016/j.socscimed.2015.02.001.
B. Simkhada, E. R. van Teijlingen, M. Porter, and P. Simkhada, “Factors affecting the utilization of antenatal care in developing countries: systematic review of the literature,” Journal of Advanced Nursing, vol. 61, no. 3, pp. 244–260, 2008, doi: 10.1111/j.1365-2648.2007.04532.x.
M. E. D’Alton et al., “Putting the ‘M’ back in maternal-fetal medicine: A 5-year report card on a collaborative effort to address maternal morbidity and mortality in the United States,” American Journal of Obstetrics and Gynecology, vol. 221, no. 4, pp. 311-317.e1, Oct. 2019, doi: 10.1016/j.ajog.2019.02.055.
Kaur, “Descriptive statistics.” Accessed: Sep. 06, 2021. [Online]. Available: https://www.ijam-web.org/article.asp?issn=2455-5568;year=2018;volume=4;issue=1;spage=60;epage=63;aulast=Kaur
T. G. Nick, “Descriptive Statistics,” in Topics in Biostatistics, W. T. Ambrosius, Ed., in Methods in Molecular BiologyTM, Totowa, NJ: Humana Press, 2007, pp. 33–52, doi: 10.1007/978-1-59745-530-5_3.
F. B. Bryant and A. Satorra, “Principles and Practice of Scaled Difference Chi-Square Testing,” Structural Equation Modeling: A Multidisciplinary Journal, vol. 19, no. 3, pp. 372–398, Jul. 2012, doi: 10.1080/10705511.2012.687671.
H. Abdi and L. J. Williams, “Chapter 23 Partial Least Squares Methods: Partial Least Squares Correlation and Partial Least Square Regression,” 2013.
E. Dumitrescu, S. Hue, C. Hurlin, and S. Tokpavi, “Machine learning for credit scoring: Improving logistic regression with non-linear decision-tree effects,” European Journal of Operational Research, 2021.
C. Lauth, J. Huet, P. Dolley, P. Thibon, and M. Dreyfus, “Maternal obesity in prolonged pregnancy: Labor, mode of delivery, maternal and fetal outcomes,” Journal of Gynecology Obstetrics and Human Reproduction, vol. 50, no. 1, p. 101909, Jan. 2021, doi: 10.1016/j.jogoh.2020.101909.
J. Chen and X. Zhang, “D-MANOVA: fast distance-based multivariate analysis of variance for large-scale microbiome association studies,” Bioinformatics, p. btab498, Jul. 2021, doi: 10.1093/bioinformatics/btab498.
K. Kebede, “Kindu Kebede Gebre. Principal Component Analysis of Birth Weight of Child, Maternal Pregnancy Weight and Maternal Pregnancy Body Mass Index: A Multivariate Analysis,” American Journal of Theoretical and Applied Statistics, vol. 10, pp. 63–71, Jan. 2021, doi: 10.11648/j.ajtas.20211001.17.
T. Williamson, M. Eliasziw, and G. H. Fick, “Log-binomial models: exploring failed convergence,” Emerging Themes in Epidemiology, vol. 10, no. 1, p. 14, Dec. 2013, doi: 10.1186/1742-7622-10-14.
H. O. Karlsen, C. Ebbing, S. Rasmussen, T. Kiserud, and S. L. Johnsen, “Use of conditional centiles of middle cerebral artery pulsatility index and cerebroplacental ratio in the prediction of adverse perinatal outcomes,” Acta Obstetricia et Gynecologica Scandinavica, vol. 95, no. 6, pp. 690–696, 2016, doi: 10.1111/aogs.12912.
J. L. Alhusen, M. J. Hayat, and D. Gross, “A longitudinal study of maternal attachment and infant developmental outcomes,” Arch Womens Ment Health, vol. 16, no. 6, p. 10.1007/s00737-013-0357–8, Dec. 2013, doi: 10.1007/s00737-013-0357-8.
A. Desiani, R. Primartha, M. Arhami, and O. Orsalan, “Naive Bayes classifier for infant weight prediction of hypertension mother,” J. Phys.: Conf. Ser., vol. 1282, p. 012005, Jul. 2019, doi: 10.1088/1742-6596/1282/1/012005.
P. L. Kumalasari, R. Arifudin, and A. Alamsyah, “Decision making system to determine childbirth process with Naïve Bayes and forward chaining methods,” Scientific Journal of Informatics, vol. 7, no. 2, Art. no. 2, Nov. 2020, doi: 10.15294/sji.v7i2.25352.
B. N. Lakshmi, T. S. Indumathi, and R. Nandini, “A study on C.5 decision tree classification algorithm for risk predictions during pregnancy,” vol. 24, pp. 1542–1549, 2015.
C. Huang et al., “Using deep learning in a monocentric study to characterize maternal immune environment for predicting pregnancy outcomes in the recurrent reproductive failure patients,” Front Immunol, vol. 12, p. 642167, Apr. 2021, doi: 10.3389/fimmu.2021.642167.
F. Javed, S. O. Gilani, S. Latif, A. Waris, M. Jamil, and A. Waqas, “Predicting risk of antenatal depression and anxiety using multi-layer perceptrons and support vector machines,” Journal of Personalized Medicine, vol. 11, no. 3, Art. no. 3, Mar. 2021, doi: 10.3390/jpm11030199.
M. Amin and A. Ali, “Performance evaluation of supervised machine learning classifiers for predicting healthcare operational decisions,” 2017, doi: 10.13140/RG.2.2.26371.25127.
J. Eigner, “Predicting maternal mortality,” p. 15, 2020.
M. M. Jaber, S. K. Abd, P. M. Shakeel, M. A. Burhanuddin, M. A. Mohammed, and S. Yussof, “A telemedicine tool framework for lung sounds classification using ensemble classifier algorithms,” Measurement, vol. 162, p. 107883, Oct. 2020, doi: 10.1016/j.measurement.2020.107883.
U. Umoh and E. Nyoho, “A fuzzy intelligent framework for healthcare diagnosis and monitoring of pregnancy risk factor in women,” p. 17, 2015.
M. W. L. Moreira, J. J. P. C. Rodrigues, G. A. B. Marcondes, A. J. V. Neto, N. Kumar, and I. De La Torre Diez, “A preterm birth risk prediction system for mobile health applications based on the support vector machine algorithm,” in 2018 IEEE International Conference on Communications (ICC), May 2018, pp. 1–5, doi: 10.1109/ICC.2018.8422616.
C. Gao, S. Osmundson, D. R. Velez Edwards, G. P. Jackson, B. A. Malin, and Y. Chen, “Deep learning predicts extreme preterm birth from electronic health records,” Journal of Biomedical Informatics, vol. 100, p. 103334, Dec. 2019, doi: 10.1016/j.jbi.2019.103334.
D. Bychkov et al., “Deep learning based tissue analysis predicts outcome in colorectal cancer,” Sci Rep, vol. 8, no. 1, p. 3395, Feb. 2018, doi: 10.1038/s41598-018-21758-3.
Y. Kan-Tor, A. Ben-Meir, and A. Buxboim, “Can deep learning automatically predict fetal heart pregnancy with almost perfect accuracy?” Human Reproduction, vol. 35, no. 6, pp. 1473–1473, Jun. 2020, doi: 10.1093/humrep/deaa083.
S. G. da Silva, M. F. da Silveira, A. D. Bertoldi, M. R. Domingues, and I. da S. dos Santos, “Maternal and child-health outcomes in pregnancies following assisted reproductive technology (ART): a prospective cohort study,” BMC Pregnancy and Childbirth, vol. 20, no. 1, p. 106, Feb. 2020, doi: 10.1186/s12884-020-2755-z.
C. L. Roberts, J. B. Ford, C. S. Algert, J. C. Bell, J. M. Simpson, and J. M. Morris, “Trends in adverse maternal outcomes during childbirth: a population-based study of severe maternal morbidity,” BMC Pregnancy Childbirth, vol. 9, no. 1, p. 7, Dec. 2009, doi: 10.1186/1471-2393-9-7.
A. A. Ali, T. M. Abdallah, S. A. Alshareef, A. Al-Nafeesah, and I. Adam, “Maternal and perinatal outcomes during a Chikungunya outbreak in Kassala, eastern Sudan,” Arch Gynecol Obstet, Aug. 2021, doi: 10.1007/s00404-021-06204-6.
R. T. Souza et al., “Perinatal outcomes from preterm and early term births in a multicenter cohort of low risk nulliparous women,” Sci Rep, vol. 10, no. 1, p. 8508, May 2020, doi: 10.1038/s41598-020-65022-z.
A. Conde-Agudelo, J. M. Belizán, and G. Lindmark, “Maternal morbidity and mortality associated with multiple gestations,” Obstetrics & Gynecology, vol. 95, no. 6, Part 1, pp. 899–904, Jun. 2000, doi: 10.1016/S0029-7844(99)00640-7.
H. Asri, “Big data and IoT for real-time miscarriage prediction: a clustering comparative study,” Procedia Computer Science, vol. 191, pp. 200–206, Jan. 2021, doi: 10.1016/j.procs.2021.07.025.
M. S. Rana et al., “First trimester miscarriage in a pregnant woman infected with COVID-19 in Pakistan,” Journal of Infection, vol. 82, no. 1, pp. e27–e28, Jan. 2021, doi: 10.1016/j.jinf.2020.09.002.
K. G. Sacinti, E. Kalafat, Y. E. Sukur, and A. Koc, “Increased incidence of first-trimester miscarriage during the COVID-19 pandemic,” Ultrasound Obstet Gynecol, vol. 57, no. 6, pp. 1013–1014, Jun. 2021, doi: 10.1002/uog.23655.
H. C. Tissot and L. A. Pedebos, “Improving risk assessment of miscarriage during pregnancy with knowledge graph embeddings,” J Healthc Inform Res, May 2021, doi: 10.1007/s41666-021-00096-6.
A. J. Wilcox, N.-H. Morken, C. R. Weinberg, S. E. Håberg, and M. C. Magnus, “Role of maternal age and pregnancy history in risk of miscarriage: prospective register based study,” The BMJ, vol. 364, 2019, doi: 10.1136/bmj.l869.
I. San Lazaro Campillo, S. Meaney, K. O’Donoghue, and P. Corcoran, “Miscarriage hospitalisations: a national population-based study of incidence and outcomes, 2005–2016,” Reproductive Health, vol. 16, no. 1, p. 51, May 2019, doi: 10.1186/s12978-019-0720-y.
M. Begum, R. M. Redoy, and A. Das Anty, “Preterm baby birth prediction using machine learning techniques,” in 2021 International Conference on Information and Communication Technology for Sustainable Development (ICICT4SD), Feb. 2021, pp. 50–54, doi: 10.1109/ICICT4SD50815.2021.9396933.
T. Włodarczyk et al., “Machine learning methods for preterm birth prediction: A review,” Electronics, vol. 10, no. 5, Art. no. 5, Jan. 2021, doi: 10.3390/electronics10050586.
A. Koivu and M. Sairanen, “Predicting risk of stillbirth and preterm pregnancies with machine learning,” Health Inf Sci Syst, vol. 8, no. 1, p. 14, Mar. 2020, doi: 10.1007/s13755-020-00105-9.
N. S. Prema and M. P. Pushpalatha, “Machine learning approach for preterm birth prediction based on maternal chronic conditions,” in Emerging Research in Electronics, Computer Science and Technology, vol. 545, V. Sridhar, M. C. Padma, and K. A. R. Rao, Eds., Lecture Notes in Electrical Engineering, vol. 545. , Singapore: Springer Singapore, 2019, pp. 581–588, doi: 10.1007/978-981-13-5802-9_52.
R. O. Bahado-Singh, S. Vishweswaraiah, B. Aydas, and U. Radhakrishna, “Placental DNA methylation changes and the early prediction of autism in full-term newborns,” PLOS ONE, vol. 16, no. 7, p. e0253340, Jul. 2021, doi: 10.1371/journal.pone.0253340.
Y. Chen and J. Bai, “Maternal and infant outcomes of full-term pregnancy combined with COVID-2019 in Wuhan, China: retrospective case series,” Arch. Gynecol. Obstet., vol. 302, no. 3, pp. 545–551, Sep. 2020, doi: 10.1007/s00404-020-05573-8.
M. Lipschuetz et al., “Prediction of vaginal birth after cesarean deliveries using machine learning,” Am. J. Obstet. Gynecol., vol. 222, no. 6, pp. 613.e1–613.e12, Jun. 2020, doi: 10.1016/j.ajog.2019.12.267.
V. Moe et al., “Precursors of social emotional functioning among full-term and preterm infants at 12 months: Early infant withdrawal behavior and symptoms of maternal depression,” Infant Behav. Dev., vol. 44, pp. 159–168, Aug. 2016, doi: 10.1016/j.infbeh.2016.06.012.
T. Khatibi, E. Hanifi, M. M. Sepehri, and L. Allahqoli, “Proposing a machine-learning based method to predict stillbirth before and during delivery and ranking the features: nationwide retrospective cross-sectional study,” BMC Pregnancy Childbirth, vol. 21, no. 1, p. 202, Mar. 2021, doi: 10.1186/s12884-021-03658-z.
E. Malacova et al., “Stillbirth risk prediction using machine learning for a large cohort of births from Western Australia, 1980–2015,” Sci. Rep., vol. 10, no. 1, p. 4183, Mar. 2020, doi: 10.1038/s41598-020-62210-9.
F. T. Da Silva et al., “Stillbirth: Case definition and guidelines for data collection, analysis, and presentation of maternal immunization safety data,” Vaccine, vol. 34, no. 49, pp. 6057–6068, Dec. 2016, doi: 10.1016/j.vaccine.2016.03.044.
J. E. Starling, J. S. Murray, C. M. Carvalho, R. K. Bukowski, and J. G. Scott, “BART with targeted smoothing: An analysis of patient-specific stillbirth risk,” Ann. Appl. Stat., vol. 14, no. 1, pp. 28–50, Mar. 2020, doi: 10.1214/19-AOAS1268.
I. B. Mboya, M. J. Mahande, M. Mohammed, J. Obure, and H. G. Mwambi, “Prediction of perinatal death using machine learning models: a birth registry-based cohort study in northern Tanzania,” BMJ Open, vol. 10, no. 10, p. e040132, Oct. 2020, doi: 10.1136/bmjopen-2020-040132.
H. Manik, M. F. G. Siregar, R. K. Rochadi, E. Sudaryati, I. Yustina, and R. S. Triyoga, “Maternal mortality classification for health promotive in Dairi using machine learning approach,” IOP Conf. Ser.: Mater. Sci. Eng., vol. 851, p. 012055, May 2020, doi: 10.1088/1757-899X/851/1/012055.
A. Paternina-Caicedo et al., “Performance of the Obstetric Early Warning Score in critically ill patients for the prediction of maternal death,” Am. J. Obstet. Gynecol., vol. 216, no. 1, pp. 58.e1–58.e8, Jan. 2017, doi: 10.1016/j.ajog.2016.09.103.
A. K. Singha, D. Phukan, S. Bhasin, and R. Santhanam, “Application of Machine Learning in Analysis of Infant Mortality and its Factors,” 2016, doi: 10.13140/RG.2.1.3857.3687.
M. Bhatia, L. K. Dwivedi, K. Banerjee, A. Bansal, M. Ranjan, and P. Dixit, “Pro-poor policies and improvements in maternal health outcomes in India,” BMC Pregnancy Childbirth, vol. 21, no. 1, p. 389, May 2021, doi: 10.1186/s12884-021-03839-w.
S. Gupta, S. N. Singh, and P. K. Jain, “Feature Selection on Public Maternal Healthcare Dataset for Classification,” in Proc. 3rd Int. Conf. Computing Informatics Networks, A. Abraham, O. Castillo, and D. Virmani, Eds., vol. 1, Singapore: Springer, 2021, pp. 573–583, doi: 10.1007/978-981-15-9712-1_49.
Z. Lutfy, A. Dawood, A. Elgergawi, and M. Mustafa, “Maternal Obesity and Its Adverse Effect on Maternal and Fetal Health,” J. Adv. Med. Med. Res., vol. 33, no. 18, pp. 27–42, Aug. 2021, doi: 10.9734/JAMMR/2021/v33i1831051.
A. Shaheen, “Changes in maternal knowledge regarding vitamin D and its health importance after application of an educational program,” Middle East Fertil. Soc. J., vol. 34, no. 2, pp. 538–543, Sep. 2021. [Online]. Available: https://www.mmj.eg.net/article.asp?issn=1110-2098;year=2021;volume=34;issue=2;spage=538;epage=543;aulast=Shaheen
S. Mohsin et al., “Accuracy of Community Informant Led Detection of Maternal Depression in Rural Pakistan,” Int. J. Environ. Res. Public Health, vol. 18, no. 3, p. 1075, Jan. 2021, doi: 10.3390/ijerph18031075.
S. Halligan, D. G. Altman, and S. Mallett, “Disadvantages of using the area under the receiver operating characteristic curve to assess imaging tests: A discussion and proposal for an alternative approach,” Eur. Radiol., vol. 25, no. 4, pp. 932–939, Apr. 2015, doi: 10.1007/s00330-014-3487-0.
L. A. Toro Espinosa, P. Jaramillo Arbeláez, M. Gómez, F. Restrepo Restrepo, and J. Q. Franco, “Is it necessary to add the eluate testing to the direct antiglobulin test to improve the detection of maternal erythrocyte alloantibodies?” Transfus. Apher. Sci., vol. 60, no. 5, p. 103177, Oct. 2021, doi: 10.1016/j.transci.2021.103177.
M. E. U. Haq, K. Hussain, and R. Farooq, “Use of Machine learning models for predicting and improving maternal and child health indicators,” Sci. Rep., vol. 9, no. 8, p. 13, Aug. 2021.
G. E. Fangonil and M. A. Schultz, “Diffusion of Precision Health Into a Baccalaureate Nursing Curriculum,” J. Nurs. Educ., vol. 60, no. 2, pp. 107–110, Feb. 2021, doi: 10.3928/01484834-20210120-10.
A. Dubey and S. R., “Comparative Study on Maternal and Child Health Services Utilization among Rural Women of Varanasi and Jaunpur,” Int. J. Curr. Res. Rev., vol. 13, pp. 94–98, Jan. 2021, doi: 10.31782/IJCRR.2021.131615.
A. Gila-Díaz et al., “Assessment of Adherence to the Healthy Food Pyramid in Pregnant and Lactating Women,” Nutrients, vol. 13, no. 7, p. 2372, Jul. 2021, doi: 10.3390/nu13072372.
D. Ramiro-Cortijo et al., “Maternal Psychological and Biological Factors Associated to Gestational Complications,” J. Pers. Med., vol. 11, no. 3, p. 183, Mar. 2021, doi: 10.3390/jpm11030183.
L. T. Day et al., “Assessment of the validity of the measurement of newborn and maternal health-care coverage in hospitals (EN-BIRTH): an observational study,” Lancet Glob. Health, vol. 9, no. 3, pp. e267–e279, Mar. 2021, doi: 10.1016/S2214-109X(20)30504-0.
L. L. T. Andersen, A. Helt, L. Sperling, and M. Overgaard, “Decision Threshold for Kryptor sFlt‐1/PlGF Ratio in Women With Suspected Preeclampsia: Retrospective Study in a Routine Clinical Setting,” J. Am. Heart Assoc., vol. 10, no. 5, Sep. 2021, doi: 10.1161/JAHA.120.021376.
A. D. Gebremariam et al., “Development and Validation of a Clinical Prognostic Risk Score to Predict Early Neonatal Mortality, Ethiopia: A Receiver Operating Characteristic Curve Analysis,” Clin. Epidemiol., vol. 13, pp. 637–647, Jul. 2021, doi: 10.2147/CLEP.S321763.
K. M. Duraccio, K. K. Zaugg, K. Nottingham, and C. D. Jensen, “Maternal self-efficacy is associated with mother-child feeding practices in middle childhood,” Eat. Behav., vol. 40, p. 101475, Jan. 2021, doi: 10.1016/j.eatbeh.2021.101475.
M. G. McGill et al., “Maternal prenatal anxiety and the fetal origins of epigenetic aging,” Biol. Psychiatry, vol. 90, no. 4, pp. 285–291, Aug. 2021, doi: 10.1016/j.biopsych.2021.07.025.
Q. Wang et al., “Exploring Maternal Self-Efficacy of First-Time Mothers among Rural-to-Urban Floating Women: A Quantitative Longitudinal Study in China,” Int. J. Environ. Res. Public Health, vol. 18, no. 6, p. 2793, Jan. 2021, doi: 10.3390/ijerph18062793.
P. Kumar et al., “Formulation development of a live attenuated human rotavirus (RV3-BB) vaccine candidate for use in low- and middle-income countries,” Hum. Vaccines Immunother., vol. 17, no. 7, pp. 2298–2310, Jul. 2021, doi: 10.1080/21645515.2021.1885279.
J. G. Parchem et al., “Racial and Ethnic Disparities in Adverse Perinatal Outcomes at Term,” Am. J. Perinatol., vol. 38, no. 5, pp. 522–529, May 2021, doi: 10.1055/s-0041-1730348.
N. Geraldine, D. Paul, and A. Bolanle, “Obstetric factors associated with anaemia in pregnancy in a primary health center in south-south Nigeria,” GSC Biol. Pharm. Sci., vol. 14, no. 3, pp. 042–049, Mar. 2021, doi: 10.30574/gscbps.2021.14.3.0028.
J. Jhee et al., “Prediction model development of late-onset preeclampsia using machine learning-based methods,” PLoS ONE, vol. 14, no. 8, p. e0221202, Aug. 2019, doi: 10.1371/journal.pone.0221202.
A. Cabral et al., “Data Acquisition Process for an Intelligent Decision Support in Gynecology and Obstetrics Emergency Triage,” in ENTERprise Information Systems, vol. 221, M. M. Cruz-Cunha, J. Varajão, P. Powell, and R. Martinho, Eds., Communications in Computer and Information Science, vol. 221, Berlin, Heidelberg: Springer, 2011, pp. 223–232, doi: 10.1007/978-3-642-24352-3_24.
S. Sumon and M. Rahman, “Fuzzy Predictive Model for Estimating the Risk Level of Maternal Mortality while Childbirth,” in Proc. 2018 IEEE Int. Conf. Systems, Man, and Cybernetics (IS), Oct. 2018, pp. 123–128, doi: 10.1109/IS.2018.8710512.
B. Madaj, H. Smith, M. Mathai, N. Roos, and N. van den Broek, “Developing global indicators for quality of maternal and newborn care: a feasibility assessment,” Bull. World Health Organ., vol. 95, no. 6, pp. 445–452, Jun. 2017, doi: 10.2471/BLT.16.179531.
U. Umoh and E. Nyoho, “A Fuzzy Intelligent Framework for Healthcare Diagnosis and Monitoring of Pregnancy Risk Factor in Women,” J. Comput. Sci. Eng., vol. 9, no. 1, p. 17, 2015.
S. Premji, “Mobile health in maternal and newborn care: fuzzy logic,” Int. J. Environ. Res. Public Health, vol. 11, no. 6, pp. 6494–6503, Jun. 2014, doi: 10.3390/ijerph110606494.
L. F. C. Nascimento, P. M. S. R. Rizol, and L. B. Abiuzi, “Establishing the risk of neonatal mortality using a fuzzy predictive model,” Cad. Saúde Pública, vol. 25, no. 9, pp. 2043–2052, Sep. 2009, doi: 10.1590/S0102-311X2009000900018.
O. Olonade, T. I. Olawande, O. J. Alabi, and D. Imhonopi, “Maternal Mortality and Maternal Health Care in Nigeria: Implications for Socio-Economic Development,” Open Access Maced. J. Med. Sci., vol. 7, no. 5, pp. 849–855, Mar. 2019, doi: 10.3889/oamjms.2019.041.
R. Tikkanen, M. Z. Gunja, M. FitzGerald, and L. Zephyrin, “Maternal Mortality Maternity Care US Compared 10 Other Countries | Commonwealth Fund,” Commonwealth Fund, Sep. 08, 2021. [Online]. Available: https://www.commonwealthfund.org/publications/issue-briefs/2020/nov/maternal-mortality-maternity-care-us-compared-10-countries
P. Dell’Aversana, “Comparison of different Machine Learning algorithms for lithofacies classification from well logs,” Bollettino di Geofisica Teorica ed Applicata, vol. 60, no. 1, pp. 17–29, Jan. 2019, doi: 10.4430/bgta0256.
K. K. Venkatesh et al., “Machine Learning and Statistical Models to Predict Postpartum Hemorrhage,” Obstet. Gynecol., vol. 135, no. 4, pp. 935–944, Apr. 2020, doi: 10.1097/AOG.0000000000003759.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Centre for Research and Innovation
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.